The methylotrophic yeast Hansenula polymorpha contains an inducible import pathway for peroxisomal matrix proteins with an N-terminal targeting signal (PTS2 proteins).

نویسندگان

  • K N Faber
  • P Haima
  • C Gietl
  • W Harder
  • G Ab
  • M Veenhuis
چکیده

Two main types of peroxisomal targeting signals have been identified that reside either at the extreme C terminus (PTS1) or the N terminus (PTS2) of the protein. In the methylotrophic yeast Hansenula polymorpha the majority of peroxisomal matrix proteins are of the PTS1 type. Thus far, for H. polymorpha only amine oxidase (AMO) has been shown to contain a PTS2 type signal. In the present study we expressed H. polymorpha AMO under control of the strong endogenous alcohol oxidase promoter. Partial import of AMO into peroxisomes was observed in cells grown in methanol/(NH4)2SO4-containing medium. However, complete import of AMO occurred if the cells were grown under conditions that induce expression of the endogenous AMO gene. Similar results were obtained when the heterologous PTS2 proteins, glyoxysomal malate dehydrogenase from watermelon and thiolase from Saccharomyces cerevisiae, were synthesized in H. polymorpha. The import of PTS1 proteins, however, was not affected by the growth conditions. These results indicate that the reduced rate of AMO import in (NH4)2SO4-grown cells is not due to competition with PTS1 proteins for the same import pathway. Apparently, AMO is imported via a separate pathway that is induced by amines and functions for PTS2 proteins in general.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hansenula polymorpha PER1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy- and amino-terminal targeting signals

We describe the cloning of the Hansenula polymorpha PER1 gene and the characterization of the gene and its product, PER1p. The gene was cloned by functional complementation of a per1 mutant of H. polymorpha, which was impaired in the import of peroxisomal matrix proteins (Pim- phenotype). The DNA sequence of PER1 predicts that PER1p is a polypeptide of 650 amino acids with no significant sequen...

متن کامل

Mutational analysis of the N-terminal topogenic signal of watermelon glyoxysomal malate dehydrogenase using the heterologous host Hansenula polymorpha.

We have studied the significance of the N-terminal presequence of watermelon (Citrullus vulgaris) glyoxysomal malate dehydrogenase [gMDH; (S)-malate:NAD+ oxidoreductase; EC 1.1.1.37] in microbody targeting. The yeast Hansenula polymorpha was used as heterologous host for the in vivo expression of various genetically altered watermelon MDH genes, whose protein products were localized by immunocy...

متن کامل

Hansenula polymorpha Pex20p is an oligomer that binds the peroxisomal targeting signal 2 (PTS2).

We have cloned and characterized the Hansenula polymorpha PEX20 gene. The HpPEX20 gene encodes a protein of 309 amino acids (HpPex20p) with a calculated molecular mass of approximately 35 kDa. In cells of an HpPEX20 disruption strain, PTS2 proteins were mislocalized to the cytosol, whereas PTS1 matrix protein import proceeded normally. Also, the PTS2 proteins amine oxidase and thiolase were nor...

متن کامل

Reprogramming Hansenula polymorpha for penicillin production: expression of the Penicillium chrysogenum pcl gene.

We aim to introduce the penicillin biosynthetic pathway into the methylotrophic yeast Hansenula polymorpha. To allow simultaneous expression of the multiple genes of the penicillin biosynthetic pathway, additional markers were required. To this end, we constructed a novel host-vector system based on methionine auxotrophy and the H. polymorpha MET6 gene, which encodes a putative cystathionine be...

متن کامل

Penicillium chrysogenum Pex5p mediates differential sorting of PTS1 proteins to microbodies of the methylotrophic yeast Hansenula polymorpha.

We have isolated the Penicillium chrysogenum pex5 gene encoding the receptor for microbody matrix proteins containing a type 1 peroxisomal targeting signal (PTS1). Pc-pex5 contains 2 introns and encodes a protein of approximately 75 kDa. P. chrysogenum pex5 disruptants appear to be highly unstable, show poor growth, and are unable to sporulate asexually. Furthermore, pex5 cells mislocalize a fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 91 26  شماره 

صفحات  -

تاریخ انتشار 1994